18th Conference on Retroviruses and Opportunistic Infections
Feb 27 – Mar 2, 2011
Hynes Convention center
Boston, MA, USA

UPDATE IN HIV DRUG RESISTANCE

Javier Martinez-Picado
HIV Drug Resistance

Drug Resistance
57 abstracts (5%)

1084 Abstracts

87 in 2010 (9%)
HIV Drug Resistance

Oral Presentations:
- Surveillance of **Transmitted** and **Acquired** HIV Drug Resistance Using WHO Surveys in RLS
- Drug Resistance and Minor Drug Resistant Variants in **iPrEx**
- Predicting the Impact of ART and **PrEP** with Overlapping Regimens on HIV Transmission and Drug Resistance in South Africa
- **DTG** in Subjects with HIV Exhibiting **RAL** Resistance: Functional Monotherapy Results of VIKING Study Cohort II

Poster Sessions:
112. Mechanisms of Resistance to **Novel Entry Inhibitors** (4)
113. Co-receptor Usage, Resistance to **CCR5 Inhibitors**, and Treatment Responses (5)
114. New Insights into **NNRTI** Resistance (5)
115. Novel Insights into **PI** Resistance (7)
116. Mechanisms of **Raltegravir** Resistance (3)
118. Resistance Profiles after **First-line Therapy** (3)
119. Is HIV Drug Resistance **Spreading**? (8)
125. Drug Resistance **Testing** (4)
140. HIV Drug Resistance and Tropism after Treatment Failure in **Children** (3)
151. Incidence and Prevention of **PMTCT**-associated Drug Resistance (4)
Drug Resistance and Minor Drug Resistant Variants in iPrEx

Liegler et al. Poster #97LB
PrPrEP with FTC/TDF provides additional protection against HIV–1 infection among MSM.
Selection for DR may occur if PrEP is used inconsistently

- RT mutations: K65R, K70E, M184V, and M184I
- qRT-PCR (allele-specific PCR; Lower limit of quantitation 0.5%)
- HIV– with pre-existing infection at enrollment were monitored longitudinally for drug resistance using population-based sequencing.

Graph:
- 22/43 (51%)
- 3/34 (9%)
Advances in PrEP

- 0/100 infections showed FTC or TDF resistance by population sequencing.
- 0/91 subjects were analyzed for minor variant DR.
- 0/33 in the TDF/FTC arm showed minor variant DR.
- 2/58 in the placebo arm: 1 subject at K65R (0.69%), and 1 at M184V (1.26%).
- Among those with pre-existing HIV-1 infection, M184V or I mutants that were detectable at seroconversion became undetectable by population sequencing 9 and 12 weeks after stopping FTC/TDF, and 36 weeks after stopping placebo.

- Minor variant DR was not detected in the active arm of the iPrEx study, consistent with low drug exposure in FTC/TDF PrEP failures.
- FTC resistance among those who started FTC/TDF with pre-existing infection waned rapidly after FTC/TDF was stopped.

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
Resistance Profiles of FTC and 3TC in TDF-containing Regimens

Marcelin et al. Poster #617
Resistance Profiles after First-line Therapy

- Genotypic resistance analysis after first virologic failure of 880 pts on:
 - FTC/TDF (535)
 - 3TC+TDF (345) + EFV/PI/r

- Lower prevalence of M184V/I with FTC use
- No differences observed prevalence of NNRTI resistance (55 vs 62%) and PI mutations (6 vs 9%) for FTC vs. 3TC

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
Resistance Profiles after First-line Therapy

WHY?

- Higher potency of FTC than 3TC
- Greater use of FTC in fixed-dose combinations
- The longer plasma and intracellular pharmacokinetics of FTC vs. 3TC.

Drug combinations which minimize drug resistance are important for developed countries, as well as, resource-limited settings where VL and resistance testing access is limited.
Predicting MVC Responses According to Absolute Number vs Proportion of CXCR-4 Using Virus among Treatment-experienced Patients

Heera et al. Poster #593
Co-receptor Usage, Resistance to CCR5 Inhibitors, and Treatment Responses

- pVL tend to experience rates of VF and the emergence of DR.
- Relevance of the absolute viral population size that is resistant to a given drug or drugs.

What is more important for predicting virologic responses to MVC?
- The number or the relative percentage of X4 virus?

Tx-experienced pts who participated in the combined MVC arms MOTIVATE or A4001029.
- The relative % of X4 virus was determined using UDS (454/Roche) + g2p.
- The absolute nº of X4 virus = pVL x %X4.
Co-receptor Usage, Resistance to CCR5 Inhibitors, and Treatment Responses

Figure 1. Distribution of CXCR4-using virus plasma HIV-1 RNA by percent at screening in TE patients in the unselected population. Patients with \(<2\% \) CXCR4-using virus respond to treatment with MVC. Patients with \(>20\% \) CXCR4-using virus are routinely identified by commonly used genotyping and not prescribed MVC.

Figure 2. Distribution of CXCR4-using virus by plasma HIV-1 RNA concentrations at screening in TE patients in the unselected population.
Co-receptor Usage, Resistance to CCR5 Inhibitors, and Treatment Responses

The amount of X4-virus predicts the % of responders to MVC in a continuous manner.
Either % or absolute amount of X4-virus can be used to dichotomise patients as R vs. NR

- ↓ pVL, ↑ CD4 counts at BL, ↑ active drugs, and ↓ viruses that are resistant to a component of a regimen are more likely to respond to a MVC-containing regimen.
Results from a Single Arm Study of DRV/r + RAL in Treatment-naïve HIV-1-infected Patients (ACTG A5262)

Taiwo et al. Poster #551
HIV-infected Men and Women, 18 years and older

ARV Naive

N=112

RAL 400 mg BID +
DRV 800 mg/RTV 100mg QD

Primary Endpoint: VL failure > 1000/ml at wk 12 or >0.5 log increase or > 50 at wk 24

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
ART Outcomes

Time to VF

- **W24**: 17 VF (11 failed to suppress, 6 rebounded; cumulative % of VF = 16%)
- **W48**: 28 VF (11 additional rebounds; cumulative % of VF = 26%)

Time to VF by BL pVL

- Log Rank Test $p=0.0002$

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
ART Outcomes

Virologic Efficacy HIV-1 RNA <200 and <50 copies/mL
(ITT analysis, missing/off study=ignored)

![Graph showing virologic efficacy over time]

- **Proportion**: 93%, 86%, 79%, 71%
- **Number of subjects**: 112, 110, 110, 107
- **Time (weeks)**: 0, 4, 12, 24, 36, 48

<table>
<thead>
<tr>
<th>N (%)</th>
<th>pVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 (46%)</td>
<td>51 - 200</td>
</tr>
<tr>
<td>6 (21%)</td>
<td>201 - 1000</td>
</tr>
<tr>
<td>5 (18%)</td>
<td>> 1000</td>
</tr>
<tr>
<td>4 (14%)</td>
<td>Missed</td>
</tr>
</tbody>
</table>

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
ART Outcomes

Integrase Mutations at Virologic Failure*

<table>
<thead>
<tr>
<th>Baseline HIV RNA** (copies/mL)</th>
<th>Integrase Mutations at VF</th>
<th>Baseline Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>911,043</td>
<td>N155H</td>
<td></td>
</tr>
<tr>
<td>246,270</td>
<td>N155H/N</td>
<td></td>
</tr>
<tr>
<td>184,212</td>
<td>Q148K/Q, N155H/N</td>
<td></td>
</tr>
<tr>
<td>230,627</td>
<td>Q148Q/R, N155H/N</td>
<td></td>
</tr>
<tr>
<td>147,076</td>
<td>N155H/N</td>
<td>M41L</td>
</tr>
</tbody>
</table>

*Successful Integrase genotyping in 25/28 patients

- All HIV RNA > 100,000 copies/mL.
- No PI resistance mutations in 23 patients with genotypic results

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
Fitness Interactions of RPV and 3TC/FTC Resistance Mutations—A Possible Explanation for the Association of E138K and M184I in Clinical Trials

Hu et al. Poster #594
New Insights into NNRTI Resistance

Pooled W48 safety and efficacy results from the ECHO and THRIVE Phase III trials comparing TMC278 vs efavirenz in Tx-naïve HIV-1-infected patients

![Graph showing virologic failure rates with NNRTI RAMs](image)

- Among TMC278 VFs with emerging NNRTI RAMs, 46%, 31% and 23% had 1, 2, or 3 NNRTI RAMs, respectively, at failure
- Non-clade B VFs (n=13, including 8 clade C) did not exhibit any distinctive pattern of NNRTI RAMs

*Not present at screening or baseline and present at time of failure while on treatment
*Occurring in ≥5.0% of VF with available resistance data

Eron J, et al. 50th ICAAC 2010; Abstract H-1810

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
New Insights into NNRTI Resistance

Why E138K/M184I is frequently observed in patients with virologic failure of RPV in phase 3 clinical trials?

TMC 125
Etravirine

TMC 278
Rilpivirine

Cross-resistance
ETR-RPV

Susceptibility to ETV (as a surrogate for RPV)

UPDATE. 18 th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
New Insights into NNRTI Resistance

The combination E138K/M184I confers a relative replication advantage and higher levels of resistance to ETV and 3TC as compared to the E138K/M184V double-mutant.
DTG in Subjects with HIV Exhibiting RAL Resistance: Functional Monotherapy Results of VIKING Study Cohort II

Eron et al. Poster #151LB
New HIV and HCV Antiviral Agents, Prevention, and ARV Strategies

- Current or historic RAL-failures with evidence of RAL-resistance
- At least 3 ART-class resistant (includes INI)
- Subjects receive DTG 50mg QD (Cohort I), 50mg BID (Cohort II)
- Cohort II subjects must have ≥1 fully active ART in OBR

Allocated to one of two groups based on genotype at screen to ensure broad sensitivity range

<table>
<thead>
<tr>
<th>Q148H/K/R + one or more secondary resistance mutations*</th>
<th>N~ 10 (cohort II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional MonoTx Phase</td>
<td>Replace RAL with DTG or add, if RAL already stopped</td>
</tr>
<tr>
<td>Continuation Phase</td>
<td>DTG + OBR</td>
</tr>
<tr>
<td>All other mutations (including codon 148 single mutation)**</td>
<td>N~ 10 (cohort II)</td>
</tr>
</tbody>
</table>

*Q148H/K/R plus changes in L74 and/or E138 and/or G140
**N155H and Y143H pathways or Q148H/K/R single mutants

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
Virologic Response by Mutational Pathway

<table>
<thead>
<tr>
<th></th>
<th>DTG 50mg QD (N=27)</th>
<th>DTG 50mg BID (N=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All subjects: 1° endpoint *</td>
<td>21/27 (78%)</td>
<td>23/24 (96%)</td>
</tr>
<tr>
<td>With Q148 +≥1</td>
<td>3/9 (33%)</td>
<td>11/11 (100%)</td>
</tr>
<tr>
<td>With other pathways</td>
<td>18/18 (100%)</td>
<td>12/13 (92%)</td>
</tr>
<tr>
<td>All subjects: <400 c/mL</td>
<td>11/27 (41%)</td>
<td>13/24 (54%)</td>
</tr>
</tbody>
</table>

*Primary endpoint: <400c/mL and/or ≥ 0.7log decline
New HIV and HCV Antiviral Agents, Prevention, and ARV Strategies

HIV Integrase Genotypic and Phenotypic Changes at day 11

- 15* paired viral isolates (day 1 & day 11) evaluated
- 0/15 subjects substitution identified in 572 in-vitro passage
- 3/15 subjects virus had additional RAL associated mutations detectable at day 11
 - In all 3 cases, substitutions were mixture with WT aa at Day 11
 - All 3 subjects achieved Tx success ($\geq 0.7 \log_{10} c/mL$ reduction from BL)
 - Two subjects have DTG susceptibility change of 3- and 5-fold as compared to BL

*Viral load too low to analyze genotype and phenotype in remaining isolates at Day 11

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
New HIV and HCV Antiviral Agents, Prevention, and ARV Strategies

VIKING Study Conclusions

- A better response rate for the primary endpoint at day 11 was observed (23/24, 96%) in DTG 50mg BID
 - All 11 subjects in BID with Q148+ secondary mutations responded (compared with 3/9 in QD).
 - A significantly larger reduction in viral load was observed at day 11 in BID (-1.76) vs. QD (-1.45).
- DTG 50mg BID has been selected for Phase 3 INI-resistant study.
Minority HIV-1 Drug Resistance Mutations and the Risk of Initial ART Failure: A Systematic Review and Pooled Analysis

Li et al. Poster #614
Novel Resistance Mechanisms, Assays, and Interpretations

Kaplan-Meier curves for the % of patients without VF by the presence of minority HIV-1 drug-resistant variants

![Kaplan-Meier curves for minority HIV-1 drug-resistant variants](image)

- Minority variants not detected
- Minority variants detected

\[p < 0.001 \]

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
Novel Resistance Mechanisms, Assays, and Interpretations

<table>
<thead>
<tr>
<th>Group vs. no MV</th>
<th>HR</th>
<th>95% CI</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any MV</td>
<td>2.6</td>
<td>1.9–3.5</td>
<td>985</td>
</tr>
<tr>
<td>Any MV (multivariate)*</td>
<td>2.3</td>
<td>1.7–3.3</td>
<td>769</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MV Type</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTI MV</td>
<td>1.6 (0.1–17.7)</td>
</tr>
<tr>
<td>NNRTI MV</td>
<td>2.6 (1.9–3.5)</td>
</tr>
<tr>
<td>EFV</td>
<td>2.6 (1.9–3.5)</td>
</tr>
<tr>
<td>NVP</td>
<td>2.7 (0.7–10.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MV / Adherence</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No MV / Any Adh</td>
<td>ref (ref)</td>
</tr>
<tr>
<td>MV / Adh ≥95%</td>
<td>1.5 (0.98–2.3)</td>
</tr>
<tr>
<td>MV / Adh <95%</td>
<td>5.1 (3.6–7.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MV %</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1%</td>
<td>2.2 (1.6–3.1)</td>
</tr>
<tr>
<td>≥1%</td>
<td>5.0 (2.4–10.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MV copy #</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–9 copies</td>
<td>1.8 (0.9–3.8)</td>
</tr>
<tr>
<td>10–99 copies</td>
<td>2.2 (1.5–3.2)</td>
</tr>
<tr>
<td>100–999 copies</td>
<td>3.0 (2.0–4.5)</td>
</tr>
<tr>
<td>≥1000 copies</td>
<td>4.1 (2.5–6.8)</td>
</tr>
</tbody>
</table>

* Multivariate analysis included adherence, ethnicity, CD4 count, and HIV-1 RNA levels

UPDATE. 18th CONFERENCE ON RETROVIRUSES AND OPPORTUNISTIC INFECTIONS
Novel Resistance Mechanisms, Assays, and Interpretations

- Minority HIV-1 DRM, and NNRTI mutations in particular, significantly increase the risk of VF of initial ART.
- This elevated risk was seen even in those with a high rate of medication adherence.
Questions are guaranteed in life; Answers aren't.